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Fig. 1: Overview of the AVR system. (a) System setup with active vision, which can use a VR-controller or teleoperation
solution to control robotic arms. (b-c) Demonstration of dynamic viewpoint and focal length adjustments during data
collection for various tasks. The small keyboard is used to adjust the focal length when using ALOHA mode. (d) Example
of policies learned for various robotic manipulation tasks, including placing cups, scrubbing plates, folding cloth, stacking
blocks, and inserting screwdriver.

Abstract— Robotic manipulation within dynamic environ-
ments presents challenges to precise control and adaptability.
Traditional fixed-view camera systems face challenges adapting
to change viewpoints and scale variations, limiting perception
and manipulation precision. To tackle these issues, we pro-
pose the Active Vision-driven Robotic (AVR) framework, a
teleoperation hardware solution that supports dynamic view-
point and dynamic focal length adjustments to continuously
center targets and maintain optimal scale, accompanied by a
corresponding algorithm that effectively enhances the success
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rates of various operational tasks. Using the RoboTwin platform
with a real-time image processing plugin, AVR framework
improves task success rates by 5%-16% on five manipulation
tasks. Physical deployment on a dual-arm system demonstrates
in collaborative tasks and 36% precision in screwdriver in-
sertion, outperforming baselines by over 25%. Experimental
results confirm that AVR framework enhances environmental
perception, manipulation repeatability (40% ≤ 1 cm error),
and robustness in complex scenarios, paving the way for
future robotic precision manipulation methods in the pursuit
of human-level robot dexterity and precision. Project page:
https://AVR-robot.github.io.

I. INTRODUCTION

Robotic teleoperation has shown great potential in in-
dustrial assembly [1], minimally invasive surgery [2], and
hazardous environments [3]. However, traditional systems

https://AVR-robot.github.io


relying on fixed-view single-focal-length cameras are lim-
ited in complex scenarios because workspace changes alter
all viewpoints simultaneously and hinder the operator to
capture the optimal target view. [4], [5]. Moreover, the
visual system’s inability to adapt to scale and spatial pose
shifts reduces precision and hand-eye coordination [6]. While
imitation learning improves the efficiency of policy acqui-
sition, its adaptability in dynamic environments remains
limited [7]. Therefore, developing a visual feedback system
with adjustable viewpoints and focal lengths is crucial for
enhancing robotic teleoperation precision [8], [9].

To address this, we propose the Active Vision-driven
Robotic (AVR) framework, which integrates an active vision
system capable of dynamically adjusting both the camera’s
viewpoint and focal length. This ensures that the target
remains centered and at an optimal scale throughout the
operation. We developed a teleoperation robotic system fea-
turing a dual-arm robotic manipulator based on the Galaexea
A1 [10] platform and an advanced visual perception module.
A high-precision active vision unit consists an industrial
camera with electronically adjustable zoom and a two-axis
pan-tilt mechanism for precise viewpoint control.

Our system utilizes a Meta Quest 3 headset [11] as the
master terminal, enabling a bidirectional link with a 1080p,
60 Hz video stream and real-time head pose feedback. An op-
timized control algorithm drives a pan-tilt mechanism (±0.5◦

accuracy) and supports two modes: button-mapped zoom
via a VR controller and ALOHA-based [12] optical zoom
(1×–7×). Validated on a RoboTwin-based simulation [13],
our active vision techniques—using YOLOv8 [14] for ROI
detection and a transformer-based SRGAN with dynamic
adjustments [15]—improved task accuracy by 5%–16% with
DP3 models [16]. In physical tests, an Action Chunking
Transformer (ACT)-based system achieved up to 87% suc-
cess, and a high-precision screwdriver insertion task im-
proved by 25% (36% success) using dynamic 5× zoom and
gimbal control. Additionally, the framework reduced the end-
effector’s positioning error (40% ≤ 1 cm), confirming its
effectiveness in enhancing fine robotic operations.

Our contributions are as follows:

• We proposed the AVR framework, which integrates
active vision optimization for robotic precision manip-
ulation, enhancing the adaptability and efficiency of
teleoperation systems.

• We conducted a series of systematic experiments on
the RoboTwin-based simulation platform to verify the
effectiveness of the AVR framework in enhancing task
deployment accuracy.

• We developed a robotic system that integrates aug-
mented reality teleoperation, a dual-arm manipulator,
and an intelligent visual perception module, thereby
demonstrating the practical applicability of the AVR
framework in real-world scenarios.

II. RELATED WORK

A. Precision Manipulation

Precision manipulation refers to a robot’s ability to per-
form highly accurate, meticulous, and flexible tasks in com-
plex environments [17], [18]. Research in this area focuses
on high-precision control and adaptability to dynamic condi-
tions. Early approaches relied on rigid mechanical design and
model-driven control, using kinematic and dynamic model-
ing to achieve precise positioning and assembly in structured
settings [19]. More recently, deep learning and reinforcement
learning have improved robot adaptability in dynamic en-
vironments [20], [21], while advances in vision and tactile
sensing have enabled micrometer-level precision in grasping,
manipulation, and assembly [22]. Additionally, multirobot
collaboration has allowed for more complex and coordi-
nated precision tasks. Despite significant progress, challenges
remain in multiscale operation integration, dynamic distur-
bance compensation, and low-latency interaction [23]. Future
research should further improve real-time alignment of cross-
modal information and enhance the robustness of robotic
vision in unstructured environments to optimize precision
manipulation capabilities.

B. Imitation Learning

Imitation learning is a popular approach for training
robotic systems to perform complex tasks [24], [25]. By ob-
serving human demonstrations, imitation learning algorithms
can learn to mimic human behavior and achieve high task
performance [21]. Imitation learning has been successfully
applied in various domains, such as autonomous driving,
robotic manipulation, and computer vision [26]–[28]. In
teleoperation systems, imitation learning algorithms have
been used to train robots to perform tasks based on human
demonstrations [29]. These algorithms can learn from human
demonstrations and adapt to new environments, thereby
improving the efficiency and robustness of teleoperation
systems [30].

C. Active Vision Systems

Active vision systems have been widely applied in
robotics, computer vision, and human-computer interac-
tion [19]. These systems are characterized by their ability
to actively control the viewpoint and focal length of the
camera, thereby enhancing the system’s adaptability and
robustness [31]. Active vision systems have been used in
various applications, such as object tracking, scene recon-
struction, and visual servoing [6], [32], [33]. In the field of
teleoperation, active vision systems have been employed to
improve the operator’s situational awareness and operational
efficiency [34]. For example, active vision systems have been
used to optimize the camera viewpoint and focal length in
teleoperation tasks, thereby enhancing the operator’s ability
to perceive and interact with the environment [4].
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Fig. 2: AVR system architecture. (a) System have a 2-degree of freedom zoom camera, capable of covering the entire
workspace, left camera and front cameras provide additional viewpoints. The system supports teleoperation via an ALOHA-
based teaching pendant or a VR controller for intuitive manipulation.(b) The top camera enables 2D viewpoint adjustment
and dynamic zoom. Users rotate the VR headset to center the target and adjust zoom via keyboard or controller. (c) Data-
driven pipeline: collected joint positions, image frames, and zoom levels are processed by a transformer-based model for
action chunking and deployed for manipulation.

III. AVR SYSTEM ARCHITECTURE

A. Hardware System Overview

The system hardware architecture is shown in Fig. 2.
We establish an interactive VR teleoperation platform [35],
where the visual subsystem combines a distributed camera
array with an active servo mechanism. Specifically, the
central vision unit consists of a two-dimensional gimbal
driven by dual servos (pitch range 0-60◦, horizontal rota-
tion range ±90◦), supporting an industrial camera with an
electric zoom function (4K resolution, 7× optical zoom,
focal length range 4.8-48.2mm). The system achieves pose
synchronization with the Meta Quest 3 headset through a
quaternion-based pose mapping algorithm operating at up to
120 Hz. This algorithm processes the headset’s IMU data
to compute the required pan and tilt angles for the two-
servo pan-tilt mechanism, ensuring that the target remains
centered in a 1280×720 resolution image and enabling real-
time observation and manipulation by the operator. To further
extend the field of view, the system integrates two fixed Intel
D435i cameras, creating a top-left-front three-camera layout,
significantly enhancing the operational space coverage.

In terms of operational control, the system features two
distinct interaction methods: (1) A precision mode is imple-
mented using the industrial robotic arm teach pendant and
Robot Operating System (ROS) to replicate the end-effector’s
pose at millimeter-level accuracy. In this mode, a two-

button keyboard allows for precise adjustments of the zoom
ratio in increments of 0.05; (2) A VR controller mapping
mode, which establishes a nonlinear mapping relationship
between the controller’s movements and the robotic arm’s
joint space, with dynamic zoom controls integrated into
the controller buttons, optimizing the user experience. By
leveraging VR devices for immersive control, the system
refines the teleoperation experience with a more intuitive
interface, improved efficiency, and a closer match to real-
world interactions.

B. Data Collection and Learning Framework

As shown in Fig. 2 (b), the system framework integrates a
comprehensive data acquisition workflow. Operators adjust
the camera viewpoint using a head-mounted VR device,
while precise zoom control is achieved via a keyboard or VR
controller. We established an operational dataset that captures
four key types of sensory data:

• Angular displacements of the 6-DOF mechanical arm
joints and the gripper.

• Pitch and yaw angles from the dual-axis gimbal servo
motors.

• Sequential image streams, including RGB-D data and
optical metadata.

• Real-time dynamic zoom parameter matrices.
The training framework adopts an improved Action
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Fig. 3: RoboTwin-based viewpoint and focal-length variation simulation. (a) The RoboTwin-based simulation setup with the
dynamic top camera. (b) Data extraction and processing flow: the collected dataset includes image frames, arm joint angles,
and end-effector poses. Viewpoint transformation is simulated by object detection using YOLOv8, followed by dynamic
zoom, super-resolution reconstruction and dynamic crop-and-fill operations ensure pixel consistency with the original dataset,
enabling focal-length variation simulation. The processed data is then used for backend training.

Chunking Transformer (ACT) architecture based on ler-
obot [36]. After extensive training and deployment, the
system demonstrates an intelligent control system capable
of executing hierarchical motion planning.

C. RoboTwin-based Simulation

To verify the theoretical feasibility of the AVR system,
we developed a portable plugin within the RoboTwin sim-
ulation environment, enabling multi-scenario validation and
deployment.

As shown in Fig. 3 (a), the data acquisition mechanism in
RoboTwin employs a top-mounted camera with a global field
of view, covering the entire operation space. To evaluate the
impact of dynamic viewpoint adjustments and optical zoom
on operation accuracy, we adopt the following strategy:

• Viewpoint transformation simulation: Real-time images
from the top camera are processed to determine the
target object based on the task requirements, with target
detection and bounding box selection simulating dy-
namic adjustments of the camera’s viewpoint.

• Optical zoom simulation: A super-resolution algorithm
is employed to preserve the original image resolution af-
ter zoom adjustments, effectively emulating true optical
zoom.

Our image processing pipeline comprises several stages
that jointly enhance the target region for teleoperation. The
workflow is detailed as follows:

YOLOv8-based object detection identifies the target and
its bounding box. Let (xmin,ymin) and (xmax,ymax) be the
bounding box coordinates, and define the target center as

xc =
xmin + xmax

2
, yc =

ymin + ymax

2
.

We then apply an affine transformation to re-center the image
by translating the target center to (W/2,H/2):x′

y′

1

=

1 0 Tx
0 1 Ty
0 0 1

x
y
1

 , Tx =
W
2
−xc, Ty =

H
2
−yc.

This simulates a viewpoint adjustment so that the target is
centered in the new image Ivt(x′,y′).

Optical Zoom Simulation: A dynamic scaling factor s
is computed to simulate optical zoom. The coordinates are
scaled about the image center:

x′′ = s(x′− W
2 )+

W
2 , y′′ = s(y′− H

2 )+
H
2 .

When s > 1, the ROI is enlarged (zoomed in). The resulting
zoomed image, Izoom, is then cropped appropriately.

Super-Resolution Enhancement: The cropped low-
resolution target region PLR ∈ Rw×h×3 is processed by
a pre-trained Swin Transformer-based super-resolution
network Gθ :

PSR = Gθ (PLR) = U
(
B
(
H (PLR)

))
.

We first extract features using a series of Transformer
blocks with windowed self-attention, where the extracted
features are computed as

H (X) = LN
(
MSA(X)+X

)
,

MSA(X) =
h

∑
i=1

Attention
(
XW i

Q, XW i
K , XW i

V
)
W i

O.

with LN denoting layer normalization. Next, multi-level fea-
ture aggregation is performed through residual connections
as follows:

B(X) = X +
K

∑
k=1

SwinBlockk(X).



Finally, a pixel shuffle operation upsamples the features via

U (X) = PixelShuffle(X ∗Wup),

where Wup ∈RC×(r2C′) is the upsampling kernel and r repre-
sents the scaling factor.

Output Format Verification and Iterative Refinement: To
maintain the original image format, a format verification
matrix Mformat ∈ {0,1}H×W is defined:

Mformat(i, j) =


1 if

Bit Depth = BitDepth(Iorig),

Color Space ∈ Γ(Iorig),

Metadata ≡ Metadata(Iorig)

0 otherwise.

An iterative correction is then performed:

I(k+1)
final = I(k)final ⊙Mformat + Iorig ⊙ (1−Mformat).

All processed frames, together with supplementary data
(additional camera views, robotic arm joint angles, gripper
end-effector poses), are aggregated into a dataset for further
training and deployment.

Algorithm 1: Image Frame Processing Pipeline
1: Given raw top-view image Iorig, max scaling factor

Smax, safety coefficient α .
2: Detect targets using YOLOv8, output bounding box

(x,y,w,h).
3: Compute scaling factor and record.
4: Feed into pre-trained Swin Transformer network Gθ .
5: Feature extraction, enhancement and image upsampling.
6: Validation matrix Mformat and iterative correction.

IV. EXPERIMENT

To comprehensively evaluate the capabilities of the AVR
framework, we designed a series of experiments spanning
both simulated and real-world environments. These experi-
ments aim to assess the system’s performance across various
robotic manipulation tasks, ranging from basic pick-and-
place operations to high precision tasks requiring complex
control strategies.

A. Simulation Evaluation

On the RoboTwin-based simulation platform, we con-
ducted a systematic experimental evaluation across five dif-
ferent tasks. Specifically, we collected 50 expert demon-
stration data for each task and trained the model based on
DP3. Subsequently, we deployed in a simulated environment
and assessed its task success rate, comparing the results
with those of a baseline model. As shown in Table I,
our approach achieved a success rate improvement ranging
from 5% to 16% across all five tasks. These results further
validate the effectiveness of our method in various task
scenarios, demonstrating that dynamically adjusting visual
focus and camera viewpoints can enhance the model’s ability
to perceive key task-relevant objects.

TABLE I: Comparison of Task Success Rates between the
Baseline and Our Method in RoboTwin-based Simulation

Task Baseline Ours
Block Hammer Beat 78% 89%

Block Handover 94% 99%
Blocks Stack(easy) 23% 39%

Container Place 54% 63%
Empty Cup Place 82% 95%

B. Real Robot Performance

Based on our simulation results, We further deployed
and evaluated our AVR system on a self-constructed phys-
ical experiment platform using two control schemes: a
demonstration-based approach via an ALOHA teaching pen-
dant and an interactive approach with VR controllers. The
experimental tasks encompassed various bimanual pick-and-
place operations—such as handover, folding clothes, and
dish scrubbing—and some precision tasks designed to assess
the impact of dynamic camera zooming, such as stacking
three 5 cm-high blocks, grasping a 10 cm-long screwdriver
to accurately insert it into a 1 cm-diameter hole (Fig. 4),
grasping a 2× 1 cm piece of chewing gum from a 5-cm-
diameter container. Table II summarizes the success rates
obtained, comparing our AVR framework against baseline
methods, thereby demonstrating the benefits of dynamically
adjusting both the camera viewpoint and zoom for enhancing
task performance.

We also analyzed how adjustments to the camera view-
point and focal length impacted task success rates to varying
extents. For some pick-and-place operations (e.g., handover
or dish scrubbing), the top camera viewpoint undergoes sub-
stantial changes to keep the target in view, thereby improving
success rates. However, because these tasks typically require
only minor zoom adjustments (often less than 2×) and do
not involve high-precision operations, focal length variations
have little effect on performance. By contrast, tasks such as
folding cloth or placing cups exhibit minimal viewpoint and
zoom changes, so introducing additional zoom parameters
can introduce unnecessary complexity—sometimes reduc-
ing the success rate. Meanwhile, block stacking—requiring
frequent zoom adjustments during the placement phase for
precise alignment—exhibits a higher improvement in success
rate when dynamic zoom is incorporated, compared to stan-
dard pick-and-place tasks. Finally, for precision tasks such
as grasping chewing gum or inserting screwdriver, changing
the viewpoint alone does not sufficiently clarify the target
position; here, zoom adjustments become crucial in boosting
success rates.

Overall, these results indicate that the AVR framework
effectively improves task success rates across a variety of
scenarios. Notably, for precision tasks, conventional imitation
learning methods achieve very low success rates, whereas
the AVR-enhanced model exceeds 25%. This underscores
how our framework’s ability to capture and process finer
details enables more complex and precise manipulations
while improving stability and reliability.



a b

c

d

e

#1 #2 #3 #1 #2

init #1 #2 #3 #4

init #1 #2 #3

#4 #5 #6 #7

#1 #2 #3 #4 #5

#5#4#3#2#1

Zoom:1.0× Zoom:1.8× Zoom:5.0× Zoom:5.0× Zoom:1.0×

Zoom:1.3× Zoom:3.0× Zoom:1.0×

Zoom:3.0×

Zoom:2.9×

Zoom:1.5×Zoom:1.0×Zoom:1.2×

Zoom:1.0× Zoom:1.0× Zoom:1.2× Zoom:1.2× Zoom:1.2×

Fig. 4: Deployment of various manipulation tasks. (a) Pick-and-place of objects with varied shapes. (b) Folding fabric with
coordinated bimanual manipulation. (c) Dish scrubbing with a controlled wiping motion. (d) Block stacking requiring precise
alignment. (e) Inserting a screwdriver tip into a hole for assembly. We provide first-person views from the active vision
camera at various stages of each task, capturing changes in viewpoint and real-time focal adjustments.

TABLE II: Success rates (%) for robotic manipulation tasks under three camera settings: baseline (static view), dynamic
viewpoint only, and AVR (dynamic viewpoint with zoom).

Task Data Collection Success Rate (%)

Avg. time (s) Succ./Trials Baseline W/O Dynamic Zoom AVR (Ours)

Pick-place 30.5 40/40 75 87 90
Dish scrubbing 29.6 38/40 74 82 89

Fold cloth 35.6 38/40 71 75 67
Place cup on rack 22.1 40/40 82 93 92

Block stacking 52.5 27/30 35 57 71
Grasp chewing gum 46.3 28/30 24 27 43
Insert screwdriver 70.2 26/30 11 13 36



C. Manipulation Accuracy

In the field of robotic precision manipulation, an important
performance metric is repeatability accuracy, which refers to
the system’s ability to maintain minimal deviations when
executing the same task repeatedly. Traditional imitation
learning models often struggle with stability in repetitive
tasks, primarily due to limited training data and inconsis-
tencies in teleoperation demonstration quality. These factors
make it difficult for the model to achieve high stability in
precision operations.
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Fig. 5: Repeatability accuracy experience for AVR. We
design a "dart throwing" test. After 50 demonstrations and
15 times deployment, results (right) show that 40% of the
attempts had an error below 1 cm.

To evaluate the ability of our AVR system to learn stable
precision operations, we designed a "Dart Throwing Expert"
experiment, as illustrated in Fig. 5. In this experiment, a 0.5
mm ballpoint pen was mounted on the end effector of the
robot gripper, and a target board composed of concentric
circles with 1 cm spacing was mounted on the table. During
data collection, we recorded 50 demonstration trajectories,
each aimed precisely at the target’s center. To enhance visual
perception during data collection, we dynamically adjusted
the optical zoom of the top camera to approximately 6×,
ensuring that the field of view primarily captured the inner
three rings. The collected demonstrations were then used to
train the model, which was subsequently deployed on the
robot for testing.

The right figure illustrates the distribution of 15 de-
ployment attempts. Each concentric circle corresponds to a
specific error range; the color-coded rings and their numeric
labels indicate the assigned scores, decreasing from the
center outward. The numbers inside each ring represent how
many times landed in that ring. Final results showed an
average score of 9.3, with more than 40% of the trials
achieved a deviation of less than 1 cm. Achieving such
performance with a limited dataset highlights the effec-
tiveness of our AVR framework in enhancing the learning
capabilities of the model for precision tasks. It improves
the system’s understanding of fine details, leading to greater
execution stability and overall robustness in complex robotic
operations.

V. CONCLUSION AND FUTURE WORK

In this work, we introduce the AVR framework, which
leverages dynamic viewpoint and focal length adjustments in
active vision to enhance precise manipulation. The system
provides an intuitive teleoperation experience and a reli-
able data collection workflow, ensuring consistent dynamic
viewpoint and zoom adjustments that contribute to stable
operation and improved control during precision tasks. It
demonstrates improved precision in kinds of manipulation
tasks. Simulation and real-world experiments show that AVR
improves task success rates by 5% - 16%, with more than
25% increases in precision for precision tasks, significantly
outperforming conventional imitation learning methods. In
particular, our “dart-throwing” experiment (average score:
9.3, with 40% of trials landing within 1 cm of the tar-
get) validates the system’s enhanced precision in repeated
end-effector positioning, highlighting its potential for high-
precision robotic manipulation.

Future work will address several key areas. First, we
aim to boost data collection efficiency by refining the
interaction design and hardware configuration in ALOHA
mode. Second, we plan to enhance viewpoint control by
adopting higher-precision gimbal motors and further refining
the VR-to-camera mapping algorithm. Finally, we will ex-
plore integrating additional robotic platforms—such as those
equipped with wrist-mounted cameras and end-effector pose
sensing—to further enhance perception and adaptability for
complex operations.
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